
March 13, 2018

Case 1 There are 8 Guinea Pigs in a box at the pet store, 5 Black and 3 White. If you randomly pick three, without replacement, find the probability that you have three Whites. P(3W) = or

<u>Case 1</u>

There are 8 Guinea Pigs in a box at the pet store, 5 Black and 3 White.

If you randomly pick <u>three</u>, without replacement, find the probability that you have <u>three Whites</u>.

$$P(3W) = \frac{3}{8} * \frac{2}{7} * \frac{1}{6} = \frac{6}{336} = 0.01786 = 0.018$$

or
$$\frac{3C3}{8C3} = \frac{1}{56} = 0.01786 = 0.018$$

```
Case 2
There are 8 Guinea Pigs in a box at the pet store,
5 Black and 3 White.
If you randomly pick <u>three</u>, without replacement, find the
probability that you have <u>two White and one Black</u>.
P(2W1B) =
or
```

Case 2 There are 8 Guinea Pigs in a box at the pet store, 5 Black and 3 White. If you randomly pick three, without replacement, find the probability that you have two White and one Black. $P(2W1B) = \frac{3}{8} * \frac{2}{7} * \frac{5}{6} = \frac{30}{336} = 0.08929 = 0.089$ $\frac{3C2*5C1}{8C3} = \frac{15}{56} = 0.2679 = 0.27$ or What the...? These are not the same! Which is correct? How can you find out? Why are they different? What is different between Case 1 and Case 2?

If you solved it using:
If you solved it using: then you either have a good understanding or you got lucky.

I

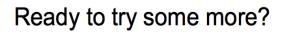
How can you be sure of solving this correctly?

You could draw the full sample space and count them.

If the black guinea pigs are A to E and the white guinea pigs are 1, 2, and 3, then this is the sample space without duplicates.

There are 56 in total.

How many arrangements have 2 white and 1 black?

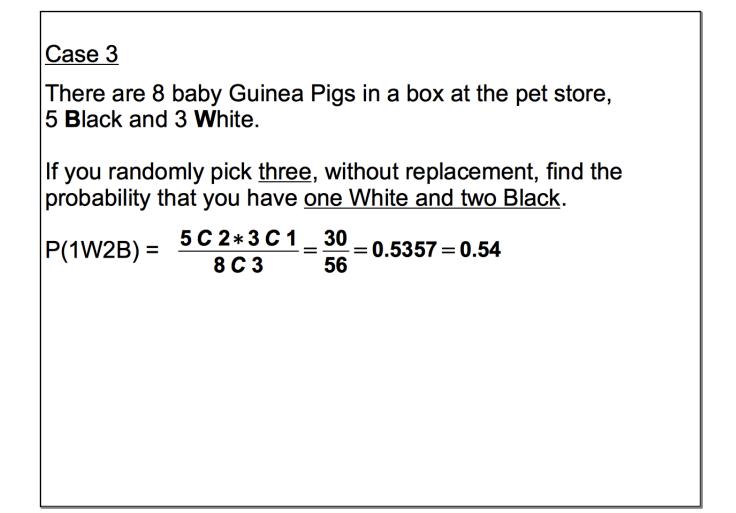

ABC						
ABD	ACD					
ABE	ACE	ADE				
AB1	AC1	AD1	AE1			
AB2	AC2	AD2	AE2	A12		
AB3	AC3	AD3	AE3	A13	A23	
	BCD					
	BCE	BDE				
	BC1	BD1	BE1			
	BC2	BD1 BD2	BE2	B12)	
	BC3	BD3	BE3	B13	B23	
		CDE				
		CD1	CE1			
		CD2	CE2	C12		
		CD3	CE3	C13	C23	
			DE1			
			DE1	D12)	
			DE3	D12	D23	
			(E12		
				E13	E23	
					123	

Ouch!

That's a lot of work, and how do you know if you got them all?

Is there an easier way? You bet.

Using the simplified sample space: S = { 3B, 2B1W, 1B2W, 3W }								
3B 2B1W 1B2W 3W	by Permutations: BBB BBW or BWB or WBB BWW or WBW or WWB WWW B2W) = 90 / 8P3 = 9	= 5P1 * 3P2 * 3 = 3P3 Tota						
Solving by Combinations:								
<i>3B</i> 2B1W	by combinations.	= 5C3 = 5C2 * 3C1						
1B2W 3W		= 5C1 * 3C2 = 3C3	= 15 = 1 = 56					
P(1B2W) = 15 / 8C3 = 15 / 56 = 0.27								
	P(2WB) =							



Case 3

There are 8 baby Guinea Pigs in a box at the pet store, 5 Black and 3 White.

If you randomly pick <u>three</u>, without replacement, find the probability that you have <u>one White and two Black</u>.

P(1W2B) =

Case 4 There are 8 baby Guinea Pigs in a box at the pet store, 5 Black and 3 White.

If you randomly pick <u>three</u>, without replacement, find the probability that you have selected <u>at least one White</u>.

P(at least 1W) =

Case 4There are 8 baby Guinea Pigs in a box at the pet store,5 Black and 3 White.If you randomly pick three, without replacement, find theprobability that you have selectedat least one White.P(at least 1W) = 0.82Remember:P(at least 1W) = 1 - P(No White)No White is the same as 3 Black $P(3B) = \frac{5 C 3}{8 C 3} = \frac{10}{56} = 0.1786 = 0.18$ P(at least 1W) = 1 - 0.18 = 0.82

```
<u>Case 5</u>
There are 8 baby Guinea Pigs in a box at the pet store,
5 Black and 3 White.
```

If you randomly pick <u>two</u>, without replacement, find the probability that your second guinea pig is white given your first pick was black.

 $P(2^{nd} \text{ is } W \mid 1^{st} \text{ was } B) =$

March 13, 2018

